Once a Week Workout Programs .Pdf

If you are a busy parent and also busy at work most of the day, it can be difficult to get to the gym 3 or 4 times a week like back in the day.

It’s important to remember that the benefit of one workout per week is massive, compared to doing nothing – so don’t give up. Even if you just have to maintain strength, fitness and/or MMA technique for a couple of years – the lack of progression can be frustrating but the alternative is to get overweight, unhealthy and probably a bit unhappy too.

In fact, just a few minutes of high intensity exercise can make a massive difference to your fitness levels.

once a week workout

Below are some ideas for a once a week workout at the gym and at home.

Gym Once a Week Workout

Warm up with a Tabata Interval of bodyweight squats*
Also do at least 1 warm up set with a lightweight before each exercise

Exercise 1 – Deadlifts x 4 sets of 4-6 reps

Exercise 2 – Push Press or Military Press x 3 sets of 6-10 reps

Exercise 3 – Chin Ups x 2 sets of Max reps

Exercise 4 – Plyometric Press ups x 3 sets of 6 reps

Exercise 5 – Hanging leg raises x 2 sets of max reps with perfect form

Finish your workout with another Tabata Interval:

Kettlebell or Dumbbell Tabata
General FitnessNumber of 20 sec RoundsRound Rest
Alternating Lunges110 secs in between each round
Goblet Squats110 secs in between each round
Hammer Curls110 secs in between each round
In & Out Squats110 secs in between each round
Overhead Tricep Extensions110 secs in between each round
Renegade Rows110 secs in between each round
Shoulder Press110 secs in between each round
Squat & Press110 secs in between each round

Gym Once a Week Workout 2

Use 10 minutes of steady state cardio and/or a Tabata of Bodyweight squats to warm up

Exercise 1 – Back Squats x 4 sets of 6 – 10 reps

Exercise 2 – Barbell Bench Press x 3 sets – 6 – 10 reps

Exercise 3 – Bent Over Barbell Row x 3 sets of 8 reps

Exercise 4 – Dips  x 3 sets of 6-10 reps

*Tabata Interval sessions consist of intense workouts for 20 seconds, then resting for 10 seconds. This cycle is repeated seven more times per workout.

More info on Tabata Intervals can be found here.

Once a Week Workout at Home

A Tabata Interval is a great option if you are at home and have no equipment

Bodyweight Tabata20 sec RoundsRound Rest
Bodyweight Squats110 secs in between each round
Froggers110 secs in between each round
High Knees110 secs in between each round
Knee Tuck & Plank Jack110 secs in between each round
Mountain Climbers110 secs in between each round
Tuck Jumps110 secs in between each round
Squat Jump Turns110 secs in between each round
Speed Skaters110 secs in between each round

For a more advanced Tabata Home Workout, you can add another 4 minute interval including the following exercises:

  • Plyometrics ‘clap’ press ups – push off and clap mid air on each rep
  • Hindu Press Ups – Start in a downward dog position, touch your nose to the floor and press back up
  • Single leg/Pistol Squats
  • Chin Ups & Kettlebell exercises if you have the equipment

To maintain mobility, The World’s Greatest Stretch is arguably the most time efficient stretch to do.

Doing the World’s Greatest Stretch in the Kid’s room

Exercise Descriptions

Stand with your feet about hip’s distance apart. Bend at the knees into the squat position. Keep your weight in your heels. Jump lightly so that your feet are a couple inches apart. Squat down again, and continue jumping in and out for wide and narrow squats.

Resistance Bands Workouts

Resistance bands or tubes are a great option if you only have time to workout at home.

They require very little space to use and to store, and the variety of exercises that can be done with them is pretty vast.

Its also a bit safer to train in the house with bands, compared to, for example a kettlebell which could also break something or accidentally KO a child.

Resistance Band Workout

Warm up with a Tabata interval of bodyweight squats.

  • Millitary Press 3 sets of 12 reps
  • Bicep Curls – 3 sets of 12 reps
  • Lateral Raises – 3 sets of 12 reps
  • Squats – 3 sets of 15 reps

For a more advanced workout add:

  • Tuck Jumps 2 sets of 8 reps
  • Jumping Lunges 2 sets of 10 reps
  • Clap Press Ups 2 sets of 6 reps

PDF. Workout Programs

Below are a number of pdf workout programs that you could use to adapt and create a once per week workout routine. Focus on using all the muscle groups, with ‘compound’ multi joint movements. For example, use chin ups for biceps, instead of curls.

Posted in Uncategorized | Leave a comment

Easy Takedowns for BJJ (No Gi)

Takedown System for Brazilian Jiu Jitsu

The Most Common Positions you’ll find yourself in regarding wrestling in BJJ are:

  1. Wrestling Clinch
  2. Wrist Control
  3. Over/Under Position (or a variation)
  4. Single Leg

The easiest way to get a takedown, in my opinion, is often an ankle pick or from a headlock or variation.

If you are new to wrestling, getting to know the snap-down into a headlock is a good starting point:

Takedown From Wrestling Clinch

Wrestling Clinch – Switch – Takedown

wrestling clinch

You have to watch the start of this GIF closely to see what’s going on.

The bald guy starts with a standard wrestling clinch with his right hand (orthodox stance/left foot forwards), but immediately switches it so that his his left arm grips the head as he steps forwards slightly with his back leg.

This gives him distance to attack the leg (unsuccessfully) – then the head

The video is trimmed at that point, but the bald guy sprawls with an anoconda grip

Takedown From Wrist Control

Snapdown into Headlock

From Opponent’s Wrist Control


Takedown from Over/Under Position

  1. Snapdown to Headlock

2. Single Leg

Simple Takedown Defence to Common Wrestling Takedowns

Single Leg Defence

Double Leg Defence

Posted in Uncategorized | Leave a comment

How to Beat a Taller Boxer

Tips on how to box a taller opponent. For MMA specific guide to fighting a taller opponent, please see our other article.

1. Slip the Taller Boxer’s Jab!

The classic and probably the best way to box a taller guy is to move forwards and slip the jab.

Drill this in practice – slip the jab and counter – it’s not enough just to slip the jab!

The easiest way to slip a jab, is to move your head to the outside. If your opponent stands in orthodox stance (left foot forward), then slip your head to the right of the jab.

If you slip your head down and forwards, you should be able to counter with your own jab.

If you are still out of range, you can step forwards with your back leg and jab again. Once you are in range, then unleash uppercuts, hooks, overhands and body shots

2. Jab to the Body

A jab to the body can be an effective technique against a taller guy – aim for the heart!

Be very careful when executing this technique however, you must bend your legs and lower your level and throw the jab straight.

If you throw the jab downwards, you will expose your chin. So bend your legs first!

3. Don’t Stalk – You Back Up & Wait

The classic way to fight against a taller guy is to walk forwards. But this isn’t always the best tactic.

You can frustrate and confuse a taller boxer, by making him come to you.

It then becomes a game of feints and counters. Make sure you have an effective jab-counter ready!

Use Feints & stutter steps if he/she is being cautious. You can even throw a feeler-jab yourself to make him open up with his own counter – then counter his counter!

4. The Walk Around Tactic

Circle on the outside, use feints and occasionally move into range with 1 punch, occasionally 2.

5. The Step Through & Blitz

The Step Through, is called The Dart in MMA. You can pretty much double your reach by stepping forwards as you punch.

Right lead – to left lead

You can take this a step further by walking forwards as you punch. In MMA this is often called the Vitor Blitz.

Be very cautious however. Over get a tiny fraction out of range with your standard jab before attempting a “Dart”. It’s very easy to counter if done too far out.

6. Switching Stance

Arguably under utilised in boxing – avoid a taller boxer from ‘timing’ and reading your movement by switching up your stance. Learning to fight in both orthodox and southpaw stance can be a huge advantage.

7. Bob & Weave

Move forwards, with constant head movement by bobbing and weaving.

I like to bob and weave until the taller boxer throws a punch, then counter with a 2 or 3 punch combination.

8. Use the layback & Shoulder Roll

In it’s simplest form, the layback involves, literally, leaning back out of range to avoid a jab.

Ideally, you’ll then ‘recoil’ back into range to throw a counter:

9. Give a False Range

By leaning forwards and turning your shoulder towards your opponent, you can create a ‘false range’. You can easily back out of range when your opponent jabs and then counter with your own punches.

10. Keep Your Head Off Centre-Line

Randy (Red shorts) Moves his head to the side when punching

Keep your head to the side when moving into your punching range. If you jump forwards with your head up and in the middle – you’ll run into a jab.

Randy Couture (6ft 1), used side to side head movement, looping punches and laybacks to beat Tim Sylvia (6ft 8).

Jab shorter person
Jab off centreline – jab and slip at the same time & lean forwards slightly

11. Mix it all up – including your rhythm

Start with 1 tactic, for example moving forwards and slipping the jab – if it works, keep using that approach!

If you still find you are getting picked-off, try a different style e.g. the walk around technique.

The walk around technique is also a good way to take a bit of a rest, in between attacks!

Specific Punches to Use Against a Taller Boxer

The Overhand Right (or left)

“look at his toes and throw a bowling ball”

The overhand is set up nicely with a jab to the body. If you can hit the body, you’re in range for an overhand.

Power comes from dropping your bodyweight first, then immediately after – the hand follows in an arcing motion.

Overhand Right
Roy Nelson V Kongo

The Russian Hook

The Russian Hook is different to a conventional hook, in that the thumb is turned down and the arm is almost straight. The fact that the arm is almost straight, gives it more range.

Russian Hook

The Jumping Left Hook

What Not to Do Against a Taller Boxer

Do not over-extend yourself to try and get in range, you will get picked apart! Against any counter puncher, it’s a bad idea to over-reach.

Bonus Tip – Hand Trapping Against a Taller Boxer

Watch Daniel Cromier Vs Stipe 2

If the taller boxer refuses to engage, try trapping his lead hand and then beating him to the punch.

Watch short fighters on youtube!

Fedor, Mike Tyson, Daniel Cormier etc

It’s also a great idea to film your own sparring, of possible, watch it back in brtween rounds

Posted in boxing, MMA | Tagged , , | Leave a comment

Anxiety is Fuel*

“We experience moments absolutely free from worry. These brief respites are called panic.”

Cullen Hightower

Don’t fight anxiety – use it. Equally, don’t fight resentment – use it as fuel.

Exercise is my way of coping with anxiety. I feel pretty terrible unless I do at least 30 minutes a day. Stretching, cardio, weights – it doesn’t really matter but you need to vent it – so do it positively.

If you don’t vent your feeling of stress & anxiety in a positive way, it is likely you will:

  • Project your stress onto someone else
  • Suffer from ‘internalising’ it – with IBS, stiff muscles, autoimmune issues

Both are shite. By the way, magnesium (including epsom salts for baths) is amazing for muscle stiffness and pain.

Anxiety Does Have Benefits

  • Motivation
  • Energy
  • Alertness

Chronic anxiety can make you feel very tired at certain points – your hypervigalance to danger can leave you exhausted at the end of the day. However, if you can think about something specific that makes you anxious, or someone that you don’t like very much – this can give you the energy to get up and do something – ideally exercise.

The best way to deal with anxiety, for me anyway, is to embrace and use it. I’ve literally shouted “oh f*ck off” to anxious thoughts in the past, but like a schoolyard bully; reacting like this just makes it more relentless. If you think of the ‘benefits’ and embrace it – thereby, not really reacting to it – it often fades.

*I imagine this is only useful advice for those with mild to moderate anxiety. So take it with a pinch of salt.

Posted in Musings, Psychology | Tagged , , , , , | Leave a comment

Forget Mental Health Awareness – Just Stop Being a Cunt


  • Be patient with everyone – depression causes memory problems as do SSRIs
  • Don’t be aggressive – unless you’re willing to fight
  • Accept that everyone is a product of their genes & their environment
  • Don’t project when you feel down or stressed
  • The people around you make you anxious. If I know everyone has my back – I’m not anxious – if I work with a group of people who bitch and moan – I know if I make a mistake, I’m going to get bitched and moaned about
  • Don’t aggressively force your opinions on people

As much as I love a good meme or ‘Most people won’t share this’ post on social media; I’m not sure how helpful the whole mental health awareness thing is.

It definitely has some positives, but the real message should be around showing compassion and tolerance to everyone – not just people with a clinical diagnosis of depression and/or anxiety.

This goes for those who have mental health problems too – try and be nice. In my experience some people with depression are right horrible bastards (a bit like Ricky Gervais at the beginning of After Life).

I’m currently taking an SSRI anti-depressant called Sertraline. I came off my previous anti-depressant, because, although it was pretty effective at levelling my mood and stopping any suicidal thoughts etc. it proper fucked my memory.

A poor memory is a symptom of anxiety alone, and also some SSRI medication too. Put those two bad boys together and your memory is likely to be proper fucked.

If You Can’t Have Empathy – Have Compassion

Empathy requires some similar experience. If you’ve never had issues with mental health or your memory then it’s hard to put yourself in the other person’s shoes.

However, you don’t necessarily need empathy – just have some compassion.

Remember, people are just a product of their environment and genetics; nobody chooses to be stupid, dopey, or weird. I sure as fuck didn’t and wouldn’t be that way if I can help it!

What I really don’t like – is the look of bemusement some people give me when I can’t remember something. Taking the piss is fine, but I just want to chin people when they give me ‘the look of disdain’.

It’s a bit of a vicious circle of –

having a bad memory – and then hating yourself for forgetting stuff – compounded by other people losing it or mocking your for being forgetful.

Just try and be tolerant with people who are different, or specifically in my case, a bit eccentric + have memory problems. And definitely don’t get angry, especially in an environment like an office.

“Keep this thought handy when you feel a fit of rage coming on—it isn’t manly to be enraged. Rather, gentleness and civility are more human, and therefore manlier. A real man doesn’t give way to anger and discontent, and such a person has strength, courage, and endurance—unlike the angry and complaining. The nearer a man comes to a calm mind, the closer he is to strength.” – Marcus Aurelius

How to Not be a C*nt

  • Feedback in private & praise in public. Don’t be one of those passive aggressive office-wankers who likes to feedback mistakes in front of everyone
  • Don’t slag people off unless they’ve done something horrendous
  • Accept people as they are
  • Don’t make fun of people in front of an audience or people you don’t know very well – that’s when banter goes too far IMO
  • Have patience with people – especially those who have issues with their memories as this can be a symptom of anxiety and/or SSRIs

By the way – I think it’s fine to tell a depressed person to stop complaining. Depression is as contagious as man flu; if someone is constantly complaining and blaming other people for all their problems – please – tell them to shut up. Unfortunately this often leads to the victim-triad; by being told not to be a victim, people often feel like you’re being unfair; making them even more of a victim. So good luck with that issue.

Stuff that Helps if You Do Have Mental Health Problems

Laugh At Yourself

If you do have mental health problems – I’ve found ‘thoughts of the self’ are often the big issue. Remember not to take life so seriously.

We’re all going to die and nobody will remember us – so fuck it

Thinking of and looking out for other people is actually the best way to stop thinking about yourself. Also, remember that 99.9% people aren’t thinking about you (they’re probably thinking about themselves), so don’t stress about it!

Brainwash Yourself with Positive Music, Videos & People

I listen to a video playlist in the morning, that includes the likes of Jocko Willink, David Goggins and positive affirmations. It’s hard to feel negative after I’ve listened to it. Also – avoid the news! Turn that shite off.

The Youtube Playlist that I listen to is here.

The Logical Way to Think – Isn’t Always the Best Way to Think

Be cynical but don’t suck the joy out of everything with it. Sometimes, it’s best to choose another chain of thought.

For example, it might be helpful to take ownership/accountability of all your problems, even if nothing was really your fault. Fuck playing the victim – that shit never helps.

For example, let’s say you pay a tradesman up front and he doesn’t show up – is that your fault or the tradesman’s?

I don’t think that example explains the concept very well, so if you have 10 mins, watch the video below:

Another, probably better example – if you watch Lord of the Rings thinking “this is made up stupid shite”, then you might be right, but it’s still not a ‘good’ way to think – especially if you’re effecting people around you, who may be enjoying it.

I guess religion and faith is another example – it might not be logical, but if it gives you or other people strength and courage, then let them get on with it.

Remember too, you tend to get back what you ‘put out’ into the world. You can also develop a habit of positive (and negative thinking). Make an effort to be positive everyday and it does get easier!



Posted in Musings | Tagged , , , | Leave a comment

Guide to UK Trees

Nothing to do with MMA – sorry – however, I thought this would be very useful for educating the kids whilst going on one of our very common walks in the woods and countryside. It’s also interesting for me to find out and have a future reference.

Most Common UK Trees

European Ash


Branch & Leaves of a European Ash Tree Image Source

Aspen – Populus Tremula

The leaves are easily damaged by sunlight.

The top leaves move a lot, so the lower leaves get their fair share of sunlight

The trees can be interconnected underground – the same tree is effectively produces several trees all connected together.

Birch leaves are much more triangular in shape, Aspen are rounded
Image Source

Silver Birch – Betula Pendula

Birch can live to about 80 years old.

The bark sheds layers, like skin

Leaves are small and triangular with a toothed edge.

Prefer light, dry and acidic soils.

Silver Birch Leaf – Image Source

Sessile Oak – Quercus Petraea


Unlike the English Oak, the sessile oak does not have stalks on its acorns.

These trees can be identified by their lobed shaped leaves and their acorns.

The greyish bark of this oak, used to be used in leather tanning industries.

Sweet Chestnut – Castanea Sativa

Sweet chestnut are completely different to horse chestnut, so don’t get them confused.

The easiest way to identify a sweet chestnut is by it’s big, bold, spear-shaped leaves.

The leaves have a serrated edge, like Rambo’s knife

sweet cheestnut leaf

It also produces chestnuts!

Horse Chestnut

The tree with conkers!

Scot’s Pine

Scotland’s National Tree

Image Source

Rowan Tree

Posted in Musings, Nutrition | Tagged , , , , , , | Leave a comment

Bending Horseshoes by Hand & Horseshoe Bending Technique

A great demonstration of strength of the hands, grip and the ability to brace against your leg – bending horseshoes is a great party trick (if you party in a barn) and also a good goal to aim for if you are a strongman or someone who is looking to increase grip strength.

Know Your Horseshoes Before You Attempt to Bend it

A horseshoe is only as strong as it’s weakest point – a bit like a chain.

Some horseshoes have ‘fullers’. Fullers are the grooves that allow for the insertion of nails. Some horseshoes have deeper & wider fullers than others – from a strongman perspective, this can weaken the horseshoe significantly – making it easier to bend.

Horseshoe Bending strength

Technical Tips for Horseshoe Bending

Lockout Strength

The Strength comes from the triceps at the end of their range-of-motion.
Known as “lockout strength”, the more extended and near full extension your arms are, the stronger force you will generate against the horseshoe.

Padding or Not to Pad?

Padding the horseshoe may help with limiting damage and pressure on your hands but it will also dissipate some of the pressure on the horseshoe – certainly it will spread the pressure that would otherwise be isolated to a specific section of the horseshoe.

An abrasive material such as a (very) thick and wide bandaid/sticking plaster, or even a thick tissue, appears to be the best way to bend horseshoes without cutting your hands.

Twist and Shout

Referred to some as “the crushdown” – the rotational force of bodyweight, bracing from the shoulders and pushing from the triceps and arms is a universal movement in pretty much everyone on youtube seen bending a horseshoe.

A Word of Caution about HorseShoe Bending

This movement will put a lot of stress on your shoulders, elbows and wrists. The movement is partially (kind of) isometric – i.e. static, in that the horshoe moves very little or doesn’t move at all.

When a movement is isometric, the forces will ‘push back’ more on the body, causing more stress on the joints and ligaments.

Arms Almost Locked Out. Bracing by the Hip

You can see below, how by bracing and pushing down with his bodyweight and lowering his head, the abdominals come into play quite significantly:

Bending a horse shoe
Using the Abdominals, bodyweight and Tricep Lockout Strength to bend the bar

Image Reference DennisRogers.Net

Not everyone appears to incorporate the abs when bending however. This guy has more of a lateral movement:

Training to Bend Horseshoes

Firstly, if you want to bend horseshoes – you will need a horseshoe!

You will need a horse shoe to practice on, to build the specific type of strength required to bend it. Unless you use something very similar to bend, like a bar or rod etc and build up to a horseshoe

The SAID principle dictates it – Specific Adaptation to Imposed Demands.

Purchase one of the weaker horseshoes – with a fuller groove in it.

Here’s a website that sells horseshoes – ones that a great for starting off and achieving your first horseshoe bend!

St. Croix Ultra Lite are good for beginners. But still very difficult!

St Croix Polo are amongst the ‘second easiest’ level of horseshoe to bed.

Following on, go for a St. Croix Forge Lite Rim 10.

Training Grip Strength to Bend Horseshoes

A great way to build grip strength is to, well, grip things.

Chin ups are a good start for beginners, even just hanging from a bar as long as possible is a very effective way to build your general hand strength.

Bottom up kettlebell presses are also great for building grip strength – as you have to balance the weight as well as push it upwards.

golfers elbow

Training with a sledgehammer, or even a broom can be effective too. Doing curls and extensions with the bar:

A word of caution about grip training – you should work you wrist extensors (muscle for gripping) as well as your wrist extensors – otherwise you are likely to get some nasty over-use and imbalance injuries such as golfer’s elbow.

Holding 1 or 2 weights plates for as long as possible is another great way to train grip.

Training Lockout Strength

Probably the best way to build lockout strength for horseshoe bending, is heavy dips on parallel bars.

Heavy bench press, using bench press blocks and/or bands or chains that make the resistance greater at the top of the movement, are also great tools & exercises for building lockout strength.

Training Abdominals

Abs are used in some way, pretty much regardless of your horseshoe bending technique. Hanging leg raises and weighted crunches will help develop specific core strength.

Using cables can make the exercise more specific to horseshoe bending. Kneel down and hold the cables overhead, as you crunch downward.

Posted in Bodybuilding, Fitness, MMA | Tagged , , , | Leave a comment

Vegan Warrior Wellness Podcast

Got an 80’s intro for the podcast!

Stress ‘hacks’ – lots of magnesium glycinate, vitamin D, kava kava (not legal in the UK but available on ebay) adaptogens like rhodiola rosea

Eating well(ish) when well busy with work and children

  • intermittent fasting – eat between 12pm and 8pm only
  • meal planning – plan before you shop
  • slow cooker
  • cook in batches and stick in the freezer


Posted in bjj, Fitness, Nutrition | Tagged , , , , , | Leave a comment

Boxing Chest Workout (.pdf included)

Boxing 🥊 is a very demanding sport. There are lots of aspects of fitness that go into conditioning for boxing – one crucial thing I want everyone to know however – is that chest-strength, does not equate to punching power!

Very little power if generated specifically from the chest. The whole body (or kinetic chain) needs to be worked.

In fact, the difference between ‘low level’ & ‘high level’ boxers in one study – was the generation of force from the legs when punching:

Training the chest in isolation from the rest of the body, will hinder, not help your boxing.

Some tips for training your chest whilst not interfering with boxing fitness include

  • Replicate punches with a small amount of resistance so that it doesn’t interfere with technique and proper punching mechanics. e.g. punches with cables or bands with a low amount of resistance
  • Train muscles for power & speed, not strength
  • Heavy bench press has been shown in studies to reduce shoulder mobility – this is bad for boxing
  • Do lots of shoulder and chest mobility work before & after doing weights
  • Train movements not muscles!
  • Modify some (not all) squat exercises so that you are in a boxing stance, rather than a standard square-on stance

Example Boxing Chest Workout

ExerciseSets Reps
Dumbbell Bench Press28-12
Plyo Press Ups – Side to Side210
Medicine Ball Throw into Press Up210
Band Punches210
Thrusters – (Squat into Press)212
Pads or punch bag33 minutes

Warm up with 2 rounds of shadow boxing, 5 minutes of skipping and some shoulder mobility exercises.

Dumbbell Bench Press 2 sets of 8 Reps

Plyometric Press Ups ‘side to side’ medicine ball or BOSU – 2 sets of 10 Reps

BOSU Plyometric Press ups
BOSU Plyometric Press ups

Medicine Ball Throw into Press Up – 2 sets of 8 Reps

plyometric MMA exercise
A Bouncier Medicine Ball Works Better

Band Punches 2 sets of 10 reps on each arm (total of 4 sets)

Thrusters – Squat & Press – 2 sets of 10 reps

Thrusters are a good ‘finisher’ that incorporate the entire body. These types of movements are important to include so that the chest doesn’t get ‘used to’ working in isolation from the legs and core.

Remember to work your back muscles equally with pulling exercises like one-arm-row, otherwise you will get a shoulder imbalance.

Download the boxing chest workout .pdf here

Also – remember to do lots of mobility work.

The World’s Greatest Stretch is an excellent all-round stretch that you can do everyday:

worlds greatest stretch
World’s Greatest Stretch. Right Foot in front, Left Knee on the floor. Left Hand Down, Right hand reaches back


Finally – remember the SAID principle – Specific Adaptations to Imposed Demands.

If you want to get fit for boxing – you must box! 


Remember the importance of a powerful core and legs for punching power

Posted in Bodybuilding, boxing | Tagged , , , | Leave a comment

How do you prevent Muscle & Fitness Loss During Injury?

  • You can use TENs machines to prevent muscle loss whilst injured
  • Nutrition is important – Under-eating will lead to more muscle loss
  • Clenbuteral is an illegal performance enhancing drug that prevents muscle loss
  • Alpha Lipoic Acid supplementation may help prevent muscle loss and help to alleviate some of the effects of the loss of insulin sensitivity
  • No significant de-training effects occur if you can get back to training within 2 weeks

For information purposes only. Exercise at your own risk

Professional sport in the twenty first century has evolved into a competitive business. Immense financial investments into sports clubs, sports governing bodies and development centres, has seen athletes converted into commodities that are expected to deliver success. As sports clubs float on the stock market, athletes follow rigorous training regimes that push them to their physical and mental limit. MMA shares the pressures and expectations of any other top-level sport. As it verges on the brink of mainstream acceptance, it survives primarily as a form of entertainment, rather than participatory sport.

Pay per view and DVD sales underpin its survival, and as a result the combatants are expected to display feats of awesome athletic ability and technique, each time they enter the cage. Fuelled by massive economic investment, MMA training has developed into a scientific discipline that addresses and attends to every aspect of physical and mental fitness.

However, as boundaries in performance are continually broken and re-established, athletes increase their risk of ‘burnout’ or physical injury. Although the recruitment of sports psychologists and physiotherapists may reduce the likelihood of such an event, it is doubtful that a competitor will end his/her career without having to endure a serious injury or slump in performance at some point. Successful fighters find a balance between hard training and rest.

Rest is required so that adaptation to training may occur. Progression and consistency is key in any training schedule and injuries can set back athletes by months, even years. It is therefore crucial that athletes limit their risk of injury by avoiding over-training, and by acquiring knowledge concerning how best to limit the ‘detraining’ effect, so that an injury or rest period is managed correctly. The following report will examine the consequences of rest and injury upon different aspects of athletic performance, and will also discuss the best ways of inhibiting the detraining effect. A number of reports and research documents shall be examined and critiqued, so that by the end of the report the question ‘detraining: threat or therapy’ will be successfully discussed and answered. 

Injury & Deconditioning 

According to Quinn (2004), one of the five principles of conditioning is the ‘Principle of Use/Disuse’. Simplified, this would imply that your muscles hypertrophy with use and atrophy with disuse. However, this ‘rule’ should not be taken completely literally, as it is important to find a balance between training and rest. There must be periods of low intensity between periods of high intensity to allow for recovery and training adaptation to occur.

Deconditioning will occur with long periods of rest. How quickly an individual loses fitness depends on how fit he/she is, how long you he/she has been training and how long he/she has stopped training (http://sportsmedicine.about.com/cs/exercisephysiology/a/aa073003a.htm; Willmore & Costill, 1999; Davis, Bull, Roscoe & Roscoe, 1999).

Thanks to recent research, deconditioning theories have become more clear and specific. Mujika et al (2000) studied well-conditioned athletes who had trained for year and then stopped exercise all together. After a three month rest from cycling training, researchers found that the athletes lost 57% of their aerobic conditioning.

However, Rietjens et al (2001) investigated the effects of reduced training on physical condition and performance in well-trained cyclists and whether an intermittent exercise programme would maintain physiological training adaptations.

Neither group showed changes in maximal workload for the Continuous Training and Intermittent Training group respectively, and it was concluded that well trained cyclists who reduce training intensity and volume for 21 days can maintain physiological adaptations, as measured during submaximal and maximal exercise. In addition the study seem to suggest that an intermittent training regimen has no advantage over a continuous training regimen during a detraining period. 
It would appear that a certain level of exercise is required to maintain sport specific fitness.

However, the intensity and duration of this ‘level of activity’ remains controversial and is specific to each sport. The level of activity necessary will depend upon an athlete’s baseline fitness level and sport (Winters & Snow, 2000). However, it would appear that if an athlete can maintain some exercise on a weekly basis, he/she could retain a greater percentage of his/her baseline fitness levels. Although it is not always possible, athletes should attempt to adapt their training in accordance to an injury.

Cross training through an injury is always an option, for example ‘aqua-jogging’ is an effective activity that enables runners to maintain fitness levels whilst recovering from repetitive strain injuries to the knees, shins and/or back (http://sportsmedicine.about.com/cs/exercisephysiology/a/aa073003a.htm). Repetitive strain injuries are increasingly common among top athletes (Smith, 2003). Many top athletes train 3-5 hours per day in an attempt to improve their level of conditioning and skill.

Physical activity is a way of life for these people, and can dominate their thoughts and actions for a number of years. When an individual stops participating in high levels of physical activity, the physiological changes that occur are usual referred to as ‘detraining’. This often occurs when an athlete becomes injured. Swain et al (1994) and Cooper (1982) suggest that a few days of rest or inactivity may enhance performance and physiological adaptations to training. However there is a critical, individual specific, period of rest, where performance capability begins to decrease. It would also appear that different aspects of fitness deteriorate at different rates, and all levels of detraining depend of training history. For example, within a few days, a person’s insulin sensitivity is decreased, whereas muscular strength can take weeks to deteriorate (Taafe & Marcus, 1997).

Skeletal Muscle Size, Strength & Power 

Sports such as powerlifting and rugby predominantly involve short, explosive movements. However most sports, such as wrestling require high levels of endurance and several other specific types of fitness and skill. Strength training may therefore, not always remain as a top priority, and may have to be maintained whilst other aspects of performance are targeted for improvement. Haggmark et al (1986) suggest that continuing to train once every 10 to 14 days, athletes can maintain strength and power for up to 4 months.

This may be important for the injured athlete, who cannot train at maximal intensity. The real losses in muscle mass and strength occur, not when training per se is stopped, but when a joint is completely immobilized. Daily activities are enough to reduce any sudden loss in performance capacity, and inhibit the drastic losses that occur through complete immobilisation.

Skeletal muscle undergoes a substantial decrease in size once a certain limb or area of the body becomes inactive. This is known as atrophy, and is accompanied by a considerable loss in power and strength. Total inactivity results in rapid losses, whilst prolonged periods of reduced activity can result in more gradual losses that become quite significant.

Taaffe and Marcus (1997) investigated the effects of cessation (8 weeks) and subsequent resumption (12 weeks) of training on muscle strength in elderly men, after completing 24 weeks of resistance training. The results indicate that elderly men lose some muscle strength following short-term detraining, but that only a brief period of retraining suffices to regain maximal strength. Reduction of fibre cross-sectional area with detraining, suggests that much of the retention in strength with detraining and reacquisition of lost strength with retraining reflects neural adaptation.

The strength that was maintained could be accounted for by neuro-muscular adaptation that occurs in the first weeks of adoption of a weight training programme; this relates to the acquisition of technical correctness and the ability to recruit the maximal number of muscle fibres with correct timing. One of the very first studies to investigate detraining (McMorris et al, 1954) showed that 45% of strength gains from a 12 weeks resistance training programme, were maintained following a 1 year absence from training. It has been suggested that this may also reflect retention of neuromuscular functioning (Housh et al, 1995). A study conducted by Costill et al (1998) upon university swimmers showed that a 4 week rest from activity did not affect shoulder or arm strength, however, swimming power was reduced by approximately 10% whether the swimmers underwent complete rest or trained at a reduced frequency of one session per week.

This suggests that functional strength and/or power may be reduced at an accelerated rate compared with strength per se. This study points to a possible area of inaccuracy in other studies – measurement techniques. The strength was measured ‘on land’ with a biokinetic swim bench, whilst power was measured in the water, using tethered swimming that allows the swimmers to use natural actions. It would appear therefore that the less specific land measurements may not reflect any effect upon performance.

When muscles are not used in the specific way that accurately replicates performance, neurological control appears to be reduced (GSSI, 2001 Conference) and normal fibre recruitment is hindered. Rest is an essential component of strength training which allows for muscular adaptation to a training load. Strength can be maintained a lot easier than it is acquired (Haggmark et al, 1986). Coaches and trainers should take this into account when designing periodised macro cycles which are tailored to the specific needs of a sport. Fitness tests such as the standing jump test and varies one repetition max tests should be used at intervals during the season in order to monitor fitness levels to ensure that each aspect of conditioning is either being maintained or improved. 

Muscular Endurance 

Muscular endurance decreases after just 2 weeks of inactivity (Winters & Snow, 2000). Skeletal muscle is characterized by its ability to dynamically adapt to variable levels of functional demands. During periods of insufficient training stimulus, muscular endurance decreases rapidly. Initial deterioration of endurance may be due to a decreased capillary density, which could take place within 2–3 wk of inactivity. Arterial-venous oxygen difference declines if training stoppage continues beyond 3–8 wk. Rapid and progressive reductions in oxidative enzyme activities bring about a reduced mitochondrial ATP production (Winters & Snow, 2000). The above changes are related to the reduction in VO2max observed during long-term training cessation.

These muscular characteristics remain above sedentary values in the detrained athlete but usually return to baseline values in recently trained individuals. Glycolytic enzyme activities show non-systematic changes during periods of training cessation. Fibre distribution remains unchanged during the initial weeks of inactivity, but oxidative fibres may decrease in endurance athletes and increase in strength-trained athletes within 8 wk of training stoppage. At this time, not enough evidence is available to determine, whether this performance decrement results from changes in the muscle or from changes in cardiovascular capacity (Coyle, 1984). Studies have shown that after a week of cast immobilisation, the activities of oxidative enzymes such as succinate dehydrogenase and cytochrome oxidase decrease by 40 to 60%. In contrast, when athletes stop training, the activities of the muscles’ glycolytic enzymes, such as phosphofructokinase, change little, if at all, for at least 4 weeks.

Coyle et al (1984) observed no change in glycolytic enzyme activity with up to 84 days of inactivity, but an average fall of over 50% in the activity of oxidative enzymes. Despite the apparent resilience of glycolytic enzymes to detrimental effects of detraining, muscle glycogen content decreases. This may be due to a sharp decrease in muscle glycogen content. Costill et al (1985) observed a 40% reduction in muscle glycogen content following 4 weeks ‘detraining’. These values were virtually identical to a totally untrained individual. This may be due to a decrease in insulin sensitivity and GLUT 4 receptor activity (Costill, 1985). 

V02Max and Endurance Performance 

Following complete cessation of training, VO2max decreases in previously highly trained individuals after as little as 4 weeks, with the decrease in VO2max varying between 4 and 14% (Coyle, 1984). The decrease in VO2max during the first 3 weeks of detraining is due to a decrease in maximal cardiac output. Subsequent decreases in VO2max are due to decreased oxygen extraction, likely from a decrease in mitochondrial density (Houmard et al, 1989) Petibois and Déléris (2003), investigated changes in the metabolic response to an endurance exercise (18 rowing km at 75 % of maximal aerobic velocity) during detraining in ten rowers previously highly-trained. Maximal aerobic velocity (VO2 max) and the metabolic response to exercise were determined in the 1st, 24th, and 47th week (training), and in the 52nd, 76th, and 99th week (detraining). Short-term detraining (5 weeks) resulted in a lower adipose tissue triglyceride (TG) delivery during exercise (p = 0.029), but this one did not represent a direct metabolic limit to exercise since the liver TG delivery increased (p = 0.039), total fatty acid concentration remained unchanged. Long-term detraining (52 weeks) altered even more the metabolic response to exercise with a decreased total fatty acid concentration during exercise (week 99: 10.6 +/- 2.0 mmol/l; p = 0.022), which induced a higher glycolysis utilization.

A haemolytic response to endurance exercise was observed through haptoglobin and transferrin concentration changes (weeks 47 vs. 99; p = 0.029 and 0.027, respectively), which resulted probably from higher red blood cell destruction. Endurance-trained athletes should avoid detraining periods over a few weeks since alterations of the metabolic adaptations to training may become rapidly chronic after such delays. (Petibois C & Deleris G, 2003). 

Saltin et al (1968), examined the effect of 20 days of bed rest upon cardio respiratory endurance. On average the subjects experienced a 25% decrease in submaximal stroke volume, a 25% decrease in maximal cardiac output, and 27% decrease in maximal oxygen consumption. The reductions in cardiac output and V02Max appear to be related to the decrease in stroke volume, which in turn is probably due to a decrease in heart volume, total blood volume and ventricular contractibility.

The trained subjects experienced decreases in endurance compared to the untrained subjects; furthermore the untrained subjects regained their baseline fitness in 10 days, compared to 40 days for the trained subjects. This drop in conditioning may have implications for the ‘off season’ in many sports. Athletes should either maintain physical activity during the breaks from competition, or the pre season should begin over 40 days prior to the beginning of the competitive season. Giada et al (1998) studied 12 young and 12 older healthy sedentary males to examine the effects of training, and detraining on men of different age groups. Each subject underwent a maximal exercise test using a cycle-ergometer in order to measure maximum oxygen consumption and a echocardiography in order to assess left ventricle morphology and systolic function.

During the training period both groups of athletes showed higher values of maximum oxygen consumption, left ventricular wall thickness, end-diastolic diameter and volume, as well as left ventricular mass, than their control subjects. After the detraining period the wall thickness decreased only in young athletes, while left ventricular mass and end-diastolic diameter and volume reduced only in older athletes. It would appear from this study that the detraining effect may have many variables, one of which is age. However, further research using a greater number of subjects and control groups is warranted to provide a conclusive answer. Impairment of cardiovascular function following a few weeks of detraining is largely caused b a reduction in plasma volume, which in turn diminishes the plasma volume of the heart. Coyle et al (1986) observed a 9% decrease in blood volume and a 12% decrease in both stroke volume and plasma volume after two to four weeks of detraining following sustained periods of training, either running or cycling.

After the subjects were detrained, they were infused with dextrin solution to expand their blood volume until it exceeded their trained level. This improved cardiovascular function and V02max, but had little positive effect upon endurance performance. Reductions in cardio respiratory endurance appear to be much greater than reductions in strength and power over identical periods of detraining. Drinkwater and Horvarth (1972) studied seven female track athletes and again 3 months after training had ended. During the 3 month period, the athletes participated in typical physical activities for their age group, including physical education. At the end of the 3 months their V02Max had decreased by an average of 15.5%. Their new V02Max levels were similar to that of non-athletic girls the same age. Despite the rapid losses outlined in these studies, it would appear that a detraining effect only occurs if a person decreases their training volume by one thirds or more (Houmard et al, 1989), and/or their intensity falls below 70% Vo2Max.

Training for endurance or endurance sports differs from power and strength training in that it can be, and often is trained almost everyday (www.pponline.co.uk). Endurance can decrease in a matter of days after training has stopped. For example it has been shown that insulin sensitivity decreases to sedentary levels after just 10 days of rest (Gautier, 2004), leading to lower levels of muscle and liver glycogen. Athletes should include a period of reduced training intensity and frequency, but it is recommended that rest does not exceed 10 days and intensity does not fall below 70% V02Max.


Other Physiological Changes 

Herd et al (1998) examined the effect of detraining upon postprandial lipeamia. Fourteen normolipidaemic, recreationally active young adults aged 18-31 years participated, in two self-selected groups: three men and five women (BMI 21·7-27·6 kg/m2) completed 13 weeks of running training, after which they refrained from exercise for 9 d; three men and three women (BMI 21·5-25·6 kg/m2) maintained their usual lifestyle. Oral fat tolerance tests were conducted at baseline and again 15 h, 60 h and 9 d after the runners’ last training session. In the absence of the acute effect of exercise, i.e. 60 h after the last training session, there was no effect of training on either postprandial lipaemia or on post-heparin lipo protein lipase activity. However, changes during 9 d of detraining in both these variables differed significantly between groups; after 2 d without exercise (60 h test), the runners’ lipaemic response was 37% higher than it was the morning after their last training session (15 h test; runners v. controls P , 0·05), with a reciprocal decrease in post-heparin LPL activity (P < 0:01). These findings suggest that improved fitness does not necessarily confer an effect on postprandial lipaemia above that attributable to a single session of exercise. Postprandial lipaemia is not elevated with training status and is therefore not influenced by detraining. It is however an acute response, and training must be regular and consistent in order to experience any benefits. 

Retraining After Injury

Recovery of conditioning after a period of inactivity is affected by a person’s fitness level, length of training before the period of inactivity, and length of inactivity. Those who were fittest before inactivity suffer the greatest losses in fitness and also take longest to recover from inactivity. Two or three weeks of detraining have shown to cause the following decrements in highly trained subjects (Ross & Leveritt, 2001): Muscle oxidative enzymes decreased by 13 to 24% Performance time decreased by about 2 to 5% Vo2 max decreased by about 4% In a study conducted by Saltin et al (1968), 3 weeks of detraining resulted in significant losses in performance capacity. Following 15 days of retraining, only Vo2max had returned to its original trained level. Oxidative enzymes did not improve and although performance time showed some improvement, it still remained 2 to 5% below the trained time. This suggests that in elite athletes, the duration of retraining must exceed that of detraining in order to re-establish performance capacity to its original values. 

Nutrition is an important consideration during times of inactivity. For example, a rugby player should decide whether or not to remain in positive energy balance in order to prevent further catabolism of muscle tissue, or should he try and remain as close as possible to a neutral energy balance in order to offset accumulation of fat tissue.

Van Baak (2004) showed that underfeeding by 250kcal per day over 6 weeks, resulted in the catabolism of 75% body fat and 25% fat free mass; underfeeding in addition to inactivity may result in massive in strength and power for the rugby player. Alpha Lipoic Acid mimics (to a certain extent) the anabolic effects of insulin (Eason et al, 2002). Loss of insulin resistance is on of the major causes of deconditioning during detraining, and therefore this supplement may be useful to injured athletes by preventing the unwanted accumulation of body fat, whilst keeping muscle lipid and glycogen levels high. 

PEDs & Injury Recovery

Many athletes resort to illegal substance use in an attempt to offset the effects of inactivity or to accelerate the recovery process. Clenbuterol, a bronchodilator that used to be prescribed to asthmatics, is believed to poses anticatabolic properties, and is often used in the post cycle stages by steroid taking athletes, in order to avoid the catabolic effects of inhibited testosterone levels. Clinical research conducted by Montovani et al, 2001 has supported the theory that clenbuterol does possess some anti catabolic properties.

Anabolic steroids themselves have also been used by injured athletes in the past. Anabolic-androgenic steroids increase protein synthesis and therefore may mimic the effects of training, and repair tissue damage at an accelerated rate. Primabolin and stanozol are reputed as possessing the greatest anti catabolic properties, but stanozol, as a non-aromitising steroid (does not convert to oestrogen), is said to have a possible damaging effect upon joints by decreasing their fluid content. Conversely, aromatising steroids such as deca durabolin or deca nandrolone, are said to accelerate recovery from joint injuries by increasing the levels of synovial fluid within the joint capsule (MIMS, 2003).

TENS / NMES Electrical Stimulation for Injuries

Electrical Stimulation In one of the earliest published studies on the effects of high-intensity neuro-muscular electrical stimulation (NMES) on the maintenance of size and strength in immobilised muscles, researchers electrically stimulated the quadriceps and hamstrings on a daily basis for three weeks in the immobilised leg of an athlete wearing a lower-extremity cast as a result of Grade-II medial-collateral and anterior-cruciate ligament sprains in his knee (Pocari et al, 2003; Caggiano et al, 1994). On the day the cast was removed, the girth of the athlete’s thigh was increased, suggesting that muscle hypertrophy had occurred, instead of the usual cast-associated atrophy. In addition, single-leg, vertical-leap height was 92% as great in the immobilised leg following cast removal, compared with the uninjured leg, and the athlete was able to immediately return to competition.

The use of electrical stimulation to prevent muscle atrophy as a result of prolonged knee immobilisation following either injury or knee-ligament reconstructive surgery has been very intensely studied. Research (e.g. Pocari et al, 2003) has shown that electrical stimulation is effective in preventing decreases in muscle strength, muscle size, and even the oxygen-consumption capabilities of thigh muscles after knee immobilisation. In all but one of the studies in this area which have been published in scientific journals, electrical stimulation has been shown to be better in preventing negative changes in leg and knee-joint function, compared with no exercise, isometric exercise of the quadriceps-femoris muscles, and even isometric co-contractions of the quadriceps and hamstrings.

Studies suggested that these physiological and metabolic changes started after the 4-7th days of NMES application (Hudlicka et al, 1984) Type 2 fibrils prominently change to type 1 fibrils which are more rich for mitochondrial content, capillary density and oxidative enzyme capacity after electrical stimulation application, while the hypertrophy and hyperplasia in type 2 fibrils are more prominent after Isometric Exercise sessions (Cabric et al, 1998). This would suggest that isometric exercise may be of greater value to power athletes during injury, and electrical stimulation may be more important to endurance athletes. 

This report has illustrated the way in which different aspects of fitness tend to deteriorate with inactivity or reduced training. It can be inferred from this that performance level in different sports will diminish at a rate determine by its specific demands.

However, over-training remains a problem with elite athletes, and it is generally agreed that an of-season period is required within which training intensity should be significantly reduced in order to maintain a high level of fitness without excessive strain upon the body (Smith, 2003, Roden, 2004).

Over-training can result in high levels of cortisol, free radicals and musculo-skeletal injuries. This will lead to a slow recovery from training sessions, susceptibility to illnesses and disease and ultimately, a decreased performance. Over-training symptoms include decreased appetite and body weight loss, muscle tenderness, head colds, nausea, sleep disturbances and elevated blood pressure (Willmore & Costill, 1999). This report concludes that injured athletes should attempt to train around injuries where possible, and take into consideration the possible influence that nutrition may have over their recovery.

Posted in bjj, boxing, Fitness, MMA, Nutrition | Tagged , , , | Leave a comment